
In the last issue of SWITCHEDON , I ex-

plained the principles behind The Turtle

System, including its support of multiple

“barebones” languages, simple but power-

ful graphics facilities, ease of setting up,

precisely targeted error messages, and

links to Computer Science through its use

of a virtual Turtle Machine whose memory

and machine code can be inspected in

detail (and which enables Turtle applica-

tions to be run on the web and mobile de-

vices as well as PCs). If any readers are

interested in contributing to this project

(either paid or unpaid), by helping to de-

sign follow-on course materials (which

might be in specialist areas), please do let

me know. I can be contacted at the ad-

dress peter.millican@hertford.ox.ac.uk

To get the latest version, browse to

www.turtle.ox.ac.uk and click on the

“Download” button.

If warned that it is

potentially unsafe,

do not worry: this is just because your

computer doesn’t recognise the program,

but rest assured that nothing on this Ox-

ford University site is malicious. Having

downloaded the file (“TurtleSystem.exe”),

you can put this on your desktop or within

any folder on your computer or network,

and run it from there. The software will

make no further changes to your computer

system or network.

The Turtle System, with teaching resources and coursework setting and marking

tools, is available free thanks to a new project at Oxford University co-funded by

the Department for Education. Peter Millican, Professor at Hertford College, Ox-

ford, shows how to get started, both using the system and teaching with it.

Having started the program, click on the “Help” menu; then within the

“Examples 1” submenu, select “Simple drawing with pauses”. This will

load a short program in the system’s Editor (at the left), and if you now

click on the “RUN” button (top middle), you will see a picture being

drawn on the Canvas (at the right) as shown below.

It’s worth running this program several times to note exactly what it is

doing and how the screen changes to reflect this. The invisible “turtle”

starts in the middle of the 1000×1000 Canvas (where the X and Y coor-

dinates are both 500), pointing North (i.e. direction 0º), and as it moves

around in response to the commands “forward(450)”, “right(90)” and

“forward(300)”, its position and direction are shown in the boxes at the

top-right. Between movements, three “pause(1000)” commands tell it to

pause for 1000 milliseconds each time, while three “colour” and one

“thickness” commands tell it what kind of line to draw as it moves. The

current Thickness and Colour settings are shown (in real time) in the

boxes at the top-right, next to the “X”, “Y”, and “Direction” boxes. In this

screenshot, we see the Pascal version of the program, which is currently

best supported and particularly suitable for beginners, but there is also a

Java version (available through “Languages” after selecting the “Power

User Menu” option), with BASIC and Python also planned soon. Thus

pupils can easily prepare for moving onto a variety of other systems.

SWITCHEDON: www.computingatschool.org.uk 16

This can be accessed at www.turtle.ox.ac.uk, where full documentation and a guided tour are availa-

ble. Teachers can upload course materials, invite pupils to register for relevant courses, and have

work submitted and collated online. Submitted Turtle programs can be viewed and run in a web

browser, making assessment as convenient as possible. Moreover all this is available without having

to prepare your own materials, since we have already commissioned ready-made courses from

expert teachers, complete with PowerPoints, example programs, help resources, lesson plans,

schemes of work, assessment criteria and targets, to provide all you need in the classroom and carefully tailored to “tick

the boxes” on the new National Curriculum, as well as being engaging and educationally fulfilling.

A very easy way for pupils (and teachers) to get used to the Turtle Sys-

tem and its possibilities is to play with some of the built-in example pro-

grams, running and editing them to see what happens. These start from

straightforward “turtle graphics” drawing, then quickly bring in “for” loops

to show how easy it is to create striking effects even with very short pro-

grams (see Example 1 above). Before long we meet nested loops

(Example 2), then simple procedures (Example 3).

These are followed by examples illustrating all the main programming

structures and commands, including “repeat” and “while” loops, recur-

sive patterns, text printing and colour effects, keyboard and mouse input,

mathematical and string functions, animation and simulation of physical

systems, and various applications including video and strategy games,

and cellular automaton models (e.g. the Game of Life).

17 SWITCHEDON: www.computingatschool.org.uk

As noted earlier, the System’s error mes-

sages are very precisely targeted, wherev-

er possible giving a clear and specific in-

struction for rem-

edying the error

(as shown here)

so that pupils can

experiment and

learn effectively without requiring constant

supervision. Convenient illustrations and

explanations of program structures or

commands are provided through the two

“QuickHelp” tabs beneath the Canvas, with

“QuickHelp 1” giving 8 summary pages on

the main features, while “QuickHelp 2”

provides listings of the Turtle commands

available. These are organised by level of

difficulty (with just the simple commands

shown initially) and by functional category

(so users of any level can quickly identify

needed functions). The “Edit” menu pro-

vides an “Auto-format” facility which neatly

indents programs to a standard pattern,

encouraging good practice and enabling

“scope” errors to be identified easily.

The “Auto-format” also, of course, makes

programs easier to mark. Moreover the

system can easily be set up (through the

“Power User Menu” option) to auto-format

and/or run a program as soon as it is load-

ed – in which case examining a pupil’s

program requires no more than clicking on

the relevant file. Another helpful feature is

the “Usage” tab, which counts and lists

the commands used in a program,

organised by category (pictured left is

the analysis of the “parameterproc”

program—Example 3). I put these fa-

cilities into the original system when

using it to introduce programming to

large groups of “elective” students at

Leeds University. By designing as-

sessments accordingly (e.g. “write a

program of at least 50 lines, using at

least two looping structures …, to pro-

duce … effect”), it became possible to

assess students’ work extremely effi-

ciently, freeing up a huge amount of

time for face-to-face teaching rather

than tedious marking.

Turtle System is based on Turtle Graphics, an idea invented by Seymour Papert. This sort of programming, and
the results it produces, are easy to understand because they are so immediately visual. But the Turtle System
provided here shows that Papert‘s idea can go well beyond simple graphics, to provide a basis for fascinating and
powerful programs that introduce fundamental concepts of software engineering and artificial intelligence.

Example 1 Example 2 Example 3

The automatic program analysis for Example 3 above

mailto:peter.millican@hertford.ox.ac.uk
http://www.turtle.ox.ac.uk
http://www.turtle.ox.ac.uk

