
 The Turtle System, University of Oxford www.turtle.ox.ac.uk 1

Turtle Python 2 – Spirals and Shapes

1. Introducing Turtle Graphics programming

First, click on the “View” menu and select “Simple Mode” to hide the more advanced features of the system.

Then click on the “Examples” menu, point to “Examples 1 – drawing and counting loops”, and select the

first program on the list (“Simple drawing with pauses”). This contains simple commands for moving around

and drawing on the Canvas, which is the square area on the right of the screen. This kind of programming

is called Turtle Graphics because we imagine the moving and drawing being done by an invisible Turtle,

which starts off in the middle of the Canvas (pointing “north”).

When the program has loaded, click on the RUN button and see what happens. Then do it again… Can you

work out how the commands are having the effects that you see on the canvas? Notice that the Turtle

leaves a coloured trail (of some particular colour and thickness) when it moves forward, and that

“pause(1000)” makes the program pause for 1000 milliseconds (i.e. one second).

The example programs contain some comments (after a hash character “#”, and shown in blue italics) –

when you’ve read them, they can be removed using “Remove any comments” from the “Edit” menu. Then

make some simple changes to the program, like changing the colours, blot sizes, distances, angles,

thicknesses, or pause times. Then RUN the program again, and repeat…

The full text of this first example program, in its original form, is as follows:

draw green blot radius 100, then pause

colour(green)

blot(100)
pause(1000)

draw red line length 450 upwards, then pause

colour(red)

forward(450)

pause(1000)

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 2

red circle, right 90 degrees, thickness 9
circle(20)

right(90)

thickness(9)

change colour, pause, draw line length 300

colour(blue)

pause(1000)
forward(300)

This program includes a number of comments, which begin with a hash (#), and are used to make your

program easier to understand (the computer ignores them). It’s also common to use a comment in the first

line to indicate the name of the program – or the name of the file in which it’s stored – but this isn’t done

with the Turtle System’s built-in examples because their name is displayed already.

In this example the first command in the program is colour(green), which specifies the drawing colour

as green; then blot(100) accordingly draws a green “blot” (i.e. a filled-in circle) of radius 100 around the

initial position of the Turtle in the centre of the Canvas. Next is a pause(1000) command, which tells the

Turtle to pause for 1000 milliseconds (i.e. 1 second). Then another colour command and forward(450),

which instructs the Turtle to move forward from its initial position by 450 units. This will leave a red trail,

in accordance with the previous colour(red) command. After another pause(1000), the Turtle is told

to turn right by 90 degrees with right(90), then thickness(9) tells it to thicken its pen from the

standard 2 unit thickness to 9 units. This means that after colour(blue) and another pause(1000), the

final command forward(300) will draw a thick blue line of 300 units in what is now the direction of the

turtle (i.e. horizontal, having turned right by 90 degrees from its original vertical direction).

Having worked through this example, take a look at the next “Examples” program, which draws a smiley

face, working out what the commands do and maybe experimenting with variations to confirm your

understanding. Having done that, you should be ready to move on to more powerful programs.

2. FOR loops and a spiral pattern

Click on the “File” menu, and then on “New program” (the first entry). Alternatively, you can choose

“Skeleton program” (the second entry), which gives you a very short program with a comment header, a

variable assignment, and a few example commands already written in.

Type in the following program (or edit the skeleton program accordingly), and then click RUN to see what

it does.

SpiralA

for count in range(0,130):

 forward(count)

 right(10)

The “for” line specifies a variable called “count”. You can think of this as creating a box labelled “count”

which is able to contain just one value. Turtle Python allows a variable to hold either an integer (i.e. a whole

number) or a string (i.e. a sequence of text characters, such as “Turtle!”). In this case, Python can work out

for itself that count needs to be an integer variable from what immediately follows, because the entire line

“for count in range(0,130):” is an instruction to give the count variable each value in turn between 0 and

130, and for each value, to perform the two instructions that are indented below it:

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 3

 forward(count)
 right(10)

We think of this as going round and round the “loop” of instructions, with count’s value being changed each

time. So these two commands – “forward(count)” and “right(10)” – get performed 130 times, first

with count equal to 0, then 1, then 2, … and finally 129. Note – importantly – however, that when the value

130 is reached, the loop terminates immediately – so those two instructions don’t actually get carried out

with count equal to the limit value 130 itself.

The effect of these repeated commands is first to move the Turtle forward by count units (i.e. by 0 first time,

then 1 unit, then 2 units, then 3 units, … and eventually by 129 units), and then (each time) turn the Turtle

right by 10 degrees. So the Turtle moves round a spiral path, getting faster and faster as it goes. If you add

a blot command to the end of the loop, you’ll be able to see more clearly the Turtle’s stopping places:

for count in range(0,130):

 forward(count)

 right(10)

 blot(5)

If you want to stop the Turtle from automatically drawing a line as it moves forward from one stopping

place to another, insert a line with the command “penup()” before the for instruction. This lifts the

Turtle’s pen off the Canvas so that it can move without drawing. To put the pen back down on the Canvas

at any point, use “pendown()”.

Having identified the stopping places, you can now create a simple pattern at each of them, for example a

red blot (i.e. a filled circle) with a black (unfilled) circle around it.

SpiralB

for count in range(0,130):

 forward(count)

 right(10)

 colour(red) These four lines draw a red blot surrounded

 blot(200) by a black circle (without moving the Turtle).

 colour(black) You might like to play with different patterns

 circle(200) by changing the colours and blot/circle sizes

3. Functions and parameters (and the 50 built-in colours)

The Turtle System comes with several built-in commands for drawing shapes, like blot, circle, and

ellipse, but you can also specify your own commands to make more interesting or complex shapes. To

do this, you write a mini-program called a function (also known as a subroutine or procedure), and give it

the name of the command you want to define. The following program contains a function called

“filledcircle”, which draws a red blot of size 200 surrounded by a black circle of size 200:

SpiralC

def filledcircle():

 colour(red) here is the function, defining

 blot(200) a new command “filledcircle”

 colour(black)

 circle(200)

for count in range(130): this is short for “in range(0,130)”

 forward(count)

 right(10)

 filledcircle() this line calls the function

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 4

In fact, this program (SpiralC) draws exactly the same pattern as the previous program (SpiralB) – the four

lines drawing the red blot surrounded by a black circle have simply been taken out and put inside the

filledcircle function. This may seem a bit pointless so far, but functions become much more valuable

when they are called multiple times in a program, and especially when they are defined with parameters,

which enable them to be flexible (in the same way as most of the built-in commands). For example, you

can change the filledcircle function in the last program (SpiralC) as follows:

def filledcircle(size):

 colour(red)

 blot(size)

 colour(black)

 circle(size)

Now the function is able to draw filled circles of varying sizes, so when you call it, you must specify the size

you want. To get the previous effect, you need to change the calling line to:

 filledcircle(200)

When this calls the function, it “posts in” the value 200, making size equal to 200 – so yet again, the program

does exactly the same thing as before. Here is the new version:

SpiralD

def filledcircle(size):

 colour(red)

 blot(size)

 colour(black)

 circle(size)

for count in range(130):

 forward(count)

 right(10)

 filledcircle(200)

But now, if you change the value in the last line (e.g. to 100, or 240, or whatever), you’ll see that the size of

the filled circles changes accordingly. You can also – for example – set the size of the circles to whatever is

the current value of count, so they get bigger as the spiral grows:

 filledcircle(count)

or else to half the current value of count, which gives a different effect by exposing lines drawn as the Turtle

moves forward (unless you have added the command “penup()” as explained earlier):

 filledcircle(count/2)

In what follows, we’ll mainly be using this function with just a single parameter (i.e. size), but it’s worth

noting that you can also define a function to have two or more parameters, for example:

def filledcircle(size,fillcolour):

 colour(fillcolour)

 blot(size)

 colour(black)

 circle(size)

Now the procedure is able to draw filled circles of different sizes and different fill colours, so when you call

it, you must specify both the size and the colour, for example:

 filledcircle(200,red)

Taking this even further, the version below has three parameters, specifying the size, fill colour, and also

border colour (so with this, “filledcircle(200,red,black)” gives the original pattern):

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 5

def filledcircle(size,fcolour,bcolour):
 colour(fcolour)

 blot(size)

 colour(bcolour)

 circle(size)

We can now make the pattern more colourful, by taking advantage of the Turtle System’s built-in range of

50 colours (green, red, blue, yellow, violet, lime, orange, skyblue, brown, pink etc.).1 The easiest way of

doing this is described in the next section, but a more controlled method is to choose colours in sequence

using our “count” variable and the “%” (called modulus) operator which calculates remainders. The

expression “count % 10”, for example, gives the remainder when count is divided by 10. This will be

between 0 and 9, so “count % 10 + 1” will give a value between 1 and 10. The function “rgb” converts

each number between 1 and 50 into the corresponding “RGB” (red, green, blue) colour code. So we can

now choose one of the first 10 standard colours by using the command:

colour(rgb(count % 10 +1))

To use this to cycle through the 10 colours with the two-parameter version of the filledcircle function

(and blots/circles of size 200), we would call that function with the command:

filledcircle(200,rgb(count % 10 +1))

4. Random colours, positions, and sizes

The easiest way of making the program more colourful, however, is to use the function randcol(n), which

randomly sets the Turtle’s colour to one of the first n colours defined in the system. So to make the

filledcircle function multi-coloured, simply replace “colour(red)” with “randcol(30)” (say), so

that it chooses one of 30 colours for the blot instead of printing a red blot every time.

So far, the program has just been drawing filled circles in a spiral pattern, but now you have the

filledcircle function, you might want to try using it differently. Suppose, for example, that you want

to put filled circles at random points on the Canvas. To do this, you can use the command setxy(x,y) to

position the Turtle on the Canvas at coordinates (x, y), together with the function randrange(x) which

generates a random number between 0 and x–1 inclusive. Since the standard Canvas dimensions are

1000x1000, with coordinates 0 to 999 inclusive, the following command will position the Turtle randomly

on the Canvas:

 setxy(randrange(1000),randrange(1000))

You can also achieve the same effect using an alternative random function randint(x,y) – which

generates a random number between x and y inclusive – by replacing “randrange(1000)” with the

exactly equivalent “randint(0,999)”. Having set your random position, you can then draw a filled circle

there, with a random size between 20 and 50 (inclusive), using:

 filledcircle(randint(20,50))

If you replace the body of your earlier FOR loop with these instructions, and count up to 2000 instead of

only 130, you get:

ScatterA

def filledcircle(size):

 randcol(30)

 blot(size)

 colour(black)

1 The 50 defined colours can be seen by clicking on the “QuickHelp 1” tab below the Canvas, and choosing

“Operators/Colours” at the right hand side. The “QuickHelp 2” tab lists the built-in commands.

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 6

 circle(size)

for count in range(2000):

 setxy(randrange(1000),randrange(1000))

 filledcircle(randint(20,50))

This will display 2000 filled circles, randomly placed, randomly sized (between 20 and 50) and randomly

coloured, which should cover nearly all of the Canvas.2

5. Drawing a triangle, square, pentagon and hexagon

Now create another new empty program (click on the “File” menu, and then select “New program”), and

copy the following code:

Triangle

forward(200)

right(120)

forward(200)

Run the program to see what it does. On the Canvas on the right, you should see two sides of an equilateral

triangle. The current position of the Turtle is shown by the X and Y boxes: X gives the distance from the left

of the canvas, and Y gives the distance from the top. The Canvas is 1000 units square, so X=500 and Y=500

is in the centre. Direction gives the direction (in angles) that the Turtle is facing, with 0 meaning North, 90

meaning East, 180 meaning South, and 270 meaning West.

Now try adding two command lines to the end of this program so that it draws a complete equilateral

triangle. Can you see how to do this? Can you also add a third new command line (making six in all) so that

the Turtle ends up pointing in its original direction and in its original place?

Now start another new program, and write a similar program to draw a square, starting like this:

Square

forward(200)

right(90)

...

Again make sure that it brings the Turtle back to its original position and direction. (To enable our shape-

drawing routines to be used within programs like the original spiral, without messing them up, we want all

such routines to leave the Turtle’s position and direction unchanged.)

2 If you want the circles to go on accumulating forever (or at least, until you HALT the program), then you could

replace the FOR loop with an unending WHILE loop. To do this, replace “for count in range(2000):” with
“while 1>0:” (or choose some other condition which is always true, such as “while 1=1:”).

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 7

Can you create a similar program to draw a regular pentagon (with 5 sides), and one to draw a regular

hexagon (with 6 sides)? You might find it helpful to notice that for the regular triangle you had to turn 120°

at each corner, and for the square 90°. So to draw a complete shape, the Turtle has to turn enough corners

to get back to its original direction. So it has to turn through a total of 360° (a complete circle), which is

equal to 3×120° or 4×90°.

As before, if you want your shape outline to take one of the first 10 standard Turtle colours at random, put

the command “randcol(10)” at the beginning of the function. If you want your shapes to be filled with

colour (rather than just outlines), you can use the built-in “polygon(n)” command, which fills in the shape

made by the last n points the Turtle has visited, using the current Turtle colour.

6. Drawing shapes with a FOR loop

Your program to draw a triangle used the same pair of commands (forward and right) three times in a

row, and your program to draw a hexagon used the same pair of commands six times in a row. Can you see

how these programs could be made more efficient by using a FOR loop?

Open a new program again (“File”, “New program”). This program is supposed to draw a triangle, as before,

but this time using a separate “triangle” function that uses a FOR loop and also takes a “size” parameter. In

outline, your program should look like this:

Shapes

def triangle(size):

 for count in range(3):

 commands to draw one side of the triangle

 and turn to be ready to draw the next side

triangle(200)

Now rename your “triangle” function “square”. Can you edit the commands so that it draws a square

instead? Think about how many sides a square has, and the angle needed at each point.

Now rename your “square” function “shape” instead, and give it also a “corners” parameter:

def shape(corners,size):

Edit the function so that it can draw a shape of any given number of corners (as well as any given size). Test

it for “corners” between 3 and 6. Does it work as well when the “corners” value is 7?

We saw above how shapes can be filled with colour using the polygon command. But can you find a way

of colouring the shape in, and then drawing a black line around it (just as was done with the filled circles)?

[Hint: go to QuickHelp 2, and find the “Intermediate” level shape-drawing command polyline.] You might

well prefer the effect this gives when shapes and circles are combined within a single program (as in the

next section). Another thing you might like to try is turning the Turtle right (or left) by a random angle

before you start drawing the shape, so that not all of them have their first side parallel with each other.

7. Putting it all together

You have now learned how to draw filled circles and various shapes – all in different sizes – and how to

arrange patterns in spirals or randomly across the Canvas. So now try using these techniques together, to

create an interesting pattern. If you want your program to make a random choice of shapes, you could do

something like the following using a conditional command (an “if” command which does different things

depending on whether some condition is true or false). Here “testnum” is first set randomly between 2 and

6, and serves as the number of sides of the shape, unless it’s equal to 2, in which case a circle is drawn

instead.

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 8

 testnum:=randint(2,6);

 if testnum==2:

 filledcircle(...) if testnum is equal to 2, draw a circle;

 else: otherwise,

 shape(testnum, ...) draw a shape with testnum sides

You could also experiment with drawing irregular shapes (e.g. with random vertices, side lengths, or angles),

perhaps using variables to record coordinates where necessary. Other potentially useful techniques are

illustrated in various Turtle System example programs, as listed in the next section.

8. Taking inspiration from Turtle example programs

The Turtle System has lots of built-in example programs, and a fair number of these exhibit techniques that

you could use to enhance your own pattern-creating programs. Here are some of them:

Examples 1 menu – drawing and counting loops

Smiley face Uses ellblot to draw elliptical blots (for the face’s eyes).

The plough Uses setxy to place the Turtle at precise coordinates on the Canvas.

Spinning triangle Uses movexy to move the Turtle by a particular displacement.

Circling circles Moves out from a central point and back to generate a circular pattern.

Nested FOR loops Has one FOR loop within another, for more intricate patterns.

Random lines Draws random lines and then uses recolour to fill in the white areas.

Random ellipses Draws random ellipses and then uses recolour to fill in the white areas.

Examples 2 menu – procedures and simple recursion

Polygons Uses function to draw polygons with a given number of sides and colour.

Procedure with parameter Uses centring (as with “Circling circles”) and turning to give spiral effect.

Resizable face Uses hierarchical functions for proportional resizing of face and eyes.

Polygons Draws filled polygons with borders – much like this handout.

Stars Uses centring and “polygon” command (with “forget”) to draw stars.

Polygon rings Uses both centring and cycling colours with “%”(modulus) operator.

Recursive triangles Shows how to create triangles within triangles, within triangles etc.

Examples 3 menu – further commands and structures

Cycling colours Uses the “%” (modulus) operator to cycle through 20 colours in order.

Flashlights Generates a square array of flashing coloured lights.

3D colour effects Illustrates fine colour gradations with decreasing circles to give 3D effect.

Examples 4 menu – smooth movement and bouncing

Moving ball (both) Shows how to create movement.

Bouncing ball (both) Shows how to implement “bouncing” off the edges.

Multiple bouncing balls Uses lists of coordinates and velocities to handle multiple moving balls.

Bouncing triangle Rotating triangle bounces off edges, changing direction of rotation.

Multiple bouncing shapes Uses lists of coordinates and velocities to handle multiple moving shapes.

Examples 9 menu – self-similarity and chaos

Recursion factory Provides numerous options for recursive shape patterns.

Recursive tree Introduces another type of recursive pattern.

http://www.turtle.ox.ac.uk/

