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Turtle Python 5 – Cellular Models 

Cellular models provide a powerful and relatively straightforward way of modelling many different 

phenomena, from crystal growth to biological patterning, and from the spread of disease to social 

interaction.  They can also be fun and even quite exciting!  The Turtle System has a number of features that 

make these models relatively easy to program, and if you do not know these already, they can be quickly 

introduced by starting with a relatively simple program which is not itself a model. 

1.  Optional Introduction: The “Colouring Cells” Program 

Go to Examples menu 5 – which covers “User input, interaction and games”, and select the “Colouring cells” 

program.  To see what it does, click on “RUN”, and you will see that 10 differently coloured rectangles 

appear along the bottom of the Canvas: 

 

Each of these blocks is in fact a single coloured pixel, and they are coloured with the first ten “native” Turtle 

colours (as displayed on the relevant tab under “QuickHelp 1” at the bottom of the screen).   Now try clicking 

with the left mouse button on some of the white area of the Canvas – each time you do, the relevant pixel 

will turn black, and this will enable you to see that the entire Canvas has been divided into a grid of 10x15 

pixels (with coordinates running from 1 to 10 along the top, and 1 to 15 down the side, as shown).  Then try 

clicking with the right mouse button on one of the coloured pixels at the bottom – this time, you will see 

from the “Colour” patch (at the right above the Canvas) that the Turtle’s colour has changed accordingly.  

And if you now left-click elsewhere on the Canvas, you’ll see that the relevant pixel now turns to the new 

colour (rather than black), and you can go on in this way making a coloured pattern on the Canvas.  Finally, 

try clicking with the middle mouse button on a number of pixels.  Now, you will find that the pixel turns into 

one of the first 10 native colours, chosen randomly.  When you’ve played with this enough to understand 

what’s happening, press the “Escape” key to finish the program. 
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 While not in itself a particularly useful program, this introduces a wide range of very useful 

techniques, in only 23 lines of code (but only 14 if comments are removed).  You may have come across a 

number of these techniques before, in the “Animation and User Input” document. 

width: Final=10 

height: Final=15 

# set up canvas coordinates and resolution 
canvas(1,1,width,height) 

resolution(width,height) 

# draw coloured pixels across bottom 

for x in range(1,width+1): 

    pixset(x,height,rgb(x)) 

# now enter interactive while loop 

# until ESCAPE key is pressed 

while mk!=\escape: 

    # detect mouse click or key within 5 seconds 

    mk=detect(\mousekey,5000) 

    if mk==1: 
        # if left click, cell becomes turtle colour 

        pixset(?mousex,?mousey,turtc) 

    elif mk==2: 

        # if right click, turtle takes colour from cell 

        # "turtc=X" has the same effect as "colour(X)" 

        turtc=pixcol(?mousex,?mousey) 

    elif mk==4: 

        # if middle click, cell takes random colour 

        pixset(?mousex,?mousey,rgb(randint(1,10))) 

Let’s now take this step by step, explaining each of the program’s distinctive features in turn: 

width: Final=10 

height: Final=15 

• These two lines define constants named “width” and “height” using the Final keyword.  Specifying 

these values at the beginning of the program makes it easy to change the number of pixels into 

which the Canvas will be divided.  They could be specified as ordinary variables (e.g. “width = 10”), 

but using Final enables Turtle Python to handle them more efficiently and to declare an error if 

an attempt is made to change them.  Note that any such “Final” constant definitions have to come 

at the very beginning of the program, before any variables have been defined. 

canvas(1,1,width,height) 

• This defines the Canvas coordinates as starting from the point (1,1) at the top left, with the given 

width and height.  Note, however, that it would be more standard, when creating a cellular model, 

to use canvas(0,0,width,height), so that the x-coordinates run from 0 to width-1, and the 

y-coordinates from 0 to height-1.  (This makes it much easier if the model is intended to “wrap 

around” from bottom to top and right to left.)  We’ll generally do that in future.. 

resolution(width,height) 

• This defines the Canvas resolution – the number of pixels actually used in the Canvas image – as 

width x height.  In cellular models, we almost always want the resolution dimensions to match the 

coordinate dimensions, as indeed they do in this case. 
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for x in range(1,width+1): 
    pixset(x,height,rgb(x)) 

• A FOR loop over range(width) – which is shorthand for range(0,width) – would count from 

0 to width-1 inclusive.  This loop instead counts from 1 to width, in keeping with the non-standard 

range of x-coordinates that were defined in the canvas instruction above. 

• The command pixset(x,y,red) would set the individual pixel at coordinates (x, y) to the 

specified colour – in this case, red.   But note here that “red” is actually shorthand for a particular 

colour code number, in fact for 16711680 which is 0xFF0000 in hexadecimal. 

• The function rgb(n) returns the nth native Turtle colour code: so, for example, rgb(1) returns the 

colour code for green, rgb(2) for red, rgb(3) for blue, rgb(4) for yellow, and so on.  Thus the 

short loop colours the ten bottom pixels with the first ten native colours.. 

while mk!=\escape: 

• The program now enters a while loop (the body of which is indented), and this will continue until 

the ESCAPE key is pressed.  Initially, the variable mk will be equal to 0 (the default value), but if it 

becomes equal to 27 – which is the value of the keycode \escape – then the while condition 

mk!=\escape will become false and the loop will terminate. 

  mk:=detect(\mousekey,5000); 

• Tells the system to wait for up to 5 seconds (i.e. 5000 milliseconds) to detect either a mouse click 

or a keypress.  If no such event is detected, the variable mk will be made equal to 0.  If a mouseclick 

is detected, however, then mk will be made equal to 1, 2, or 4 depending on whether it was the left, 

right or middle mouse button.  And if a keypress is detected first, then mk will be made equal to a 

keycode value (the only relevant one here is \escape, which happens to be equal to 27).  The value 

5000 here is purely illustrative, and the program would work just as well with the instruction 

mk:=detect(\mousekey,0), which waits indefinitely for either a mouse click or a keypress.  

    if mk==1: 

        pixset(?mousex,?mousey,turtc) 

• If mk is made equal to 1 by the detect(\mousekey) function, this means the left mouse button 

has been clicked.  Then pixset(?mousex,?mousey,turtc) sets the pixel at the coordinates of 

that mouse click to the current Turtle colour. 

    elif mk==2: 

        turtc=pixcol(?mousex,?mousey) 

• If mk is made equal to 2 by the detect(\mousekey) function, this means the right mouse button 

has been clicked.  Then pixcol(?mousex,?mousey) picks up the colour of the pixel at the 

coordinates of that mouse click, and turtc – the Turtle colour attribute – is set equal to that colour. 

    elif mk==4: 

        pixset(?mousex,?mousey,rgb(randint(1,10))) 

• If mk is made equal to 4 by the detect(\mousekey) function, this means the middle mouse 

button has been clicked.  Then randint(1,10) generates a random integer between 1 and 10 

inclusive, the rgb function – as we saw earlier – converts this integer into the colour code of the 

corresponding native colour, and the pixset instruction then uses that to colour the pixel on which 

the middle mouse click occurred.  So that pixel takes on a random native colour. 
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2.  A Cellular Model of an Epidemic “Tipping Point” 

Here we’ll be looking at cellular models that are relatively easy to implement, partly because – in contrast 

with some cellular automata discussed in a later document – they are asynchronous and randomised, with 

individual cells being processed in turn rather than entire neighbourhoods.  As a first example, load and run 

the “Tipping point” program (from Examples menu 7 – “Cellular models”).  This illustrates the phenomenon 

discussed in Malcolm Gladwell’s 2000 book The Tipping Point, pp. 260-1: 

“The best way to understand the Tipping Point is to imagine a hypothetical outbreak of the flu.  Suppose, 

for example, than one summer 1,000 tourists come to Manhattan from Canada carrying an untreatable 

strain of twenty-four-hour virus.  This strain of flu has a 2 percent infection rate, which is to say that one 

out of every 50 people who come into close contact with someone carrying it catches the bug himself.  

Let’s say that 50 is also exactly the number of people the average Manhattanite – in the course of riding 

the subways and mingling with colleagues at work – comes into contact with every day.  What we have, 

then is a disease in equilibrium.  …  With those getting sick and those getting well so perfectly in balance, 

the flu chugs along at a steady but unspectacular clip through the rest of the summer and the fall.  But 

then comes the Christmas season.  The subways and buses get more crowded with tourists and 

shoppers, and instead of running into an even 50 people a day, the average Manhattanite now has close 

contact with, say, 55 people a day.  All of a sudden, the equilibrium is disrupted.  …  That moment when 

the average flu carrier went from running into 50 people a day to running into 55 people was the Tipping 

Point … at which an ordinary and stable phenomenon … turned into a public health crisis.” 

The program starts by defining various constants: 

(a) Canvas dimensions width and height (both 100 in this case). 

(b) Colours to indicate cells that are susceptible (lightgreen), infectious (red), and recovered (blue). 

(c) An initial number of infected individuals (10 by default). 

(d) The probability of a contact being infected: infectprob (to be interpreted as a percentage), and the 

number of contacts that any infectious individual will have: contacts.  By default, these are set to 

2% and 50 respectively, just as in Gladwell’s example. 

The point of defining these constants (rather than using numbers directly in the code) is to make them easy 

to change, so we can experiment with different values, in particular to see how radically the behaviour of 

the epidemic changes as the number of contacts rises above the “tipping point” of 50. 

 The program then defines a few variables, notably numinfected and numinfectious, which will keep 

track respectively of the total number of individuals who have been infected overall, and the number who 

are currently infectious.  To make it easy to ensure that these keep in step with the displayed infections, the 

infect(x,y) procedure is defined so as to increment both variables at the same time as a particular pixel 

changes colour to infectious. 

 When the program runs, random susceptible individuals (i.e. pixels) are selected to be infected until 

the chosen initial number (as in (c) above) has been reached.  Then the program main loop randomly selects 

an individual, and if they are infectious, randomly selects in turn the appropriate number of contacts (e.g. 50 

as in (d) above) and then, with an appropriate probability (e.g. 2% as in (d) above), infects them if (but only 

if) they are susceptible.  Having gone through all of the contacts, the infected individual now recovers and 

becomes recovered (changing colour to blue).  Eventually, the epidemic will subside as more and more 

individuals become recovered (and thus immune).  When nobody is left infectious, the program terminates 

and reports how many individuals have been infected overall. 

 To appreciate Gladwell’s message about “tipping points”, try running the program with increased 

values of infectprob and/or contacts.  You will see that a relatively small change in either of them can bring 

about a very significant change in the impact of the epidemic. 
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3.  Modelling the Spread of Disease, and Its Prevention 

The “Tipping point” program takes no account of the geography of the landscape on which the epidemic is 

playing out – it just assumes that within the city, everyone is mixing randomly.  But now we’ll turn to look 

at a more sophisticated model, in the “Spread of disease” example program (again from menu 7).  This is 

one example of an implementation of the well-known “SIR” (Susceptible, Infected, Recovered) model of the 

spread of infectious disease, and conveys some very important practical lessons about disease prevention.  

Like the “Tipping point” program, this starts by defining various constants: 

(a) Canvas dimensions width and height (again both 100). 

(b) Colours to indicate cells that are susceptible (lightgreen), infected (red), and recovered (blue). 

(c) An integer startradius (10) that defines the maximum boundary of the initial infection. 

(d) Three probabilities, each of which is to be interpreted as a percentage:  infectprob (1%), the 

probability that a cell within startradius will be initially infected;  immuneprob (2%), the probability 

that a cell will be immune throughout (e.g. due to prior vaccination);  and recoverprob (15%), the 

probability that an infected cell will recover in any time period. 

As before, the point of defining these constants is to make them very easy to change.  The whole point of 

this program, indeed, is to see how the behaviour then changes. 

 Following the constants and a few variables – including numinfected, which keeps count of infected 

cells – there is again a simple procedure infect(x,y), which colours cell (x,y) with the infected colour (i.e. red) 

and increments numinfected accordingly.  Then the main program begins, defining the canvas dimensions 

and resolution (just as we saw above), initialising numinfected to zero, and colouring the cells of the canvas 

according to the following rules: 

• If a cell’s distance from the centre of the canvas is less than or equal to startradius (10), then with 

probability infectprob (1%), it will be infected (red) from the start. 

• Otherwise, with probability immuneprob (2%), the cell will be recovered (blue) from the start – this 

colour is given to cells that are immune, mostly after recovery from the infection. 

• Otherwise, the cell will be susceptible (lightgreen). 

The canvas is temporarily frozen – using noupdate() ... update() – while this colouring is taking place, 

so it can be completed much more quickly. 

 After this initialisation, the spread and eventual decline of the infection are modelled with a loop 

that continues until numinfected becomes zero.  The loop starts by choosing a random value of x between 

0 and (width-1) and a random value of y between 0 and (height-1).  Then we check the colour of cell (x,y) to 

see whether it is infected (i.e. red) or not.  If it is, then with probability recoverprob (15%), we change it to 

recovered (i.e. blue), to indicate that it has now recovered and thus become immune from further infection.  

(To do this with the correct probability, we use the conditional if randrange(100)<recoverprob to 

select a random number between 0 and 99 and check whether it is less than recoverprob.)  Finally, if the 

cell is infected and has not recovered, then the following code is executed: 

n = randrange(4)*2+1 

x = x + n//3 - 1 

y = y + n%3 - 1 

if pixcol(x,y)==susceptible: 

    infect(x,y) 

The purpose of this code is to select at random one of the four closest neighbours of the infected cell and 

then, if that cell is susceptible (i.e. lightgreen), to infect it – this is how the infection spreads.  The arithmetic 

here is neat but a bit tricky, going through the following steps and using the operators for integer division 

(often called div, but “//” in Python) and remainder (often called mod, but “%” in Python): 
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randrange(4) randrange(4)*2 n n // 3 n // 3 – 1 n % 3 n % 3 – 1 

0 0 1 0 -1 1 0 

1 2 3 1 0 0 -1 

2 4 5 1 0 2 1 

3 6 7 2 1 1 0 

The shaded columns show the four possible random numbers (between 0 and 3), and the corresponding 

values that get added to x and y respectively.  Adding (-1,0) corresponds to a move left on the canvas, (0,-

1) to a move up, (0,1) to a move down, and (1,0) to a move right.  So after these additions, the coordinates 

(x,y) do indeed identify one of the four neighbouring cells.  Now it just remains to test whether that cell is 

susceptible (lightgreen), and if it is, to infect it (red). 

You might have noticed that moving in these ways from a cell on the edge of the grid could take 

us to a pixel off the canvas.  One convenient feature of pixset and pixcol – unlike corresponding 

operations with lists – is that they do not throw up an error message if this happens, and since 

it causes no trouble for the operation of our program, we are able to ignore this complication 

here.  But can you find a way in which changing the colours used could introduce a problem? 

 One practical virtue of this model of infection – 

which in its more sophisticated forms is highly influential 

and widely used – is to demonstrate very clearly the value of 

vaccination.  If the program is run as it stands, the infection 

is very likely to spread from the centre of the canvas to most 

of the susceptible cells (the image here shows it spreading 

aggressively in several directions).  But if the value of 

immuneprob is set higher – for example, changed from 2% 

to 12% – then you will find that the infection has far less 

impact, often dying out quickly and usually reaching only a 

small proportion of the canvas.  Thus artificially vaccinating 

even 10% of the population can potentially bring a huge 

payoff in disease control for the population as a whole.  Real 

diseases, of course, will vary in infectivity and other characteristics, so we cannot assume that this 

conclusion will apply to them.  But this model does allow for variation, and enables us to explore how the 

critical value of immuneprob at which the disease can be tamed depends on the probability of recovery in 

each time period: if recovery typically takes a long time (because recoverprob is low), then more widespread 

prior immunity will be required to keep the disease in check.  The crucial point here is that the longer 

recovery takes for any individual, the more opportunity the disease has to infect that individual’s 

neighbours, and so the higher the probability that it will indeed be passed on to them. 

 This particular population structure – which assumes that every individual is statically located within 

a fixed grid, with precisely four neighbours each – is of course very crude, but more complex versions of the 

“SIR” model play a vitally important role in the real world, helping epidemiologists (those who study such 

things) to understand, predict and combat the spread of diseases.  In the mathematics of infection, the most 

important parameter for any disease is its “basic reproduction number” (commonly denoted R0) – that is, 

the number of individuals that could be expected, on average, to be directly infected from one newly-

infected individual within a totally susceptible population.  In our model (with recoverprob at 15%), this 

parameter is around 2.35 for an individual surrounded by four “susceptibles”, but of course any individual 

thus infected will then have only three adjacent susceptibles (since the individual who infected them is no 

longer susceptible), and their expected direct infectivity drops accordingly, to around 1.76. 
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 An interesting experiment is to see what happens if individuals are allowed to wander (e.g. perhaps 

by incorporating some sort of “diffusion”, or long-range swaps – as a crude model for air travel), in which 

case the spread of disease is likely to be significantly greater.  The “Spread of disease” program actually 

allows for this, by providing a constant, movement, which is set to False by default, but can be edited to 

True if you want to see the effect.  Another constant, report, can be made True if you want to see updates 

on the progress of the epidemic. 

4.  Schelling’s Segregation Model 

Now we go on to examine in detail another built-in program from the Turtle System (again under Examples 

menu 7, “Cellular models”), but this time one of social rather than medical relevance.  This implements a 

model of social segregation due to the Nobel prizewinning economist Thomas Schelling, which is famous 

for showing how relative small local preferences can lead to global segregation.  If you run the program and 

then quickly click on “HALT” (before 2 seconds have elapsed), you will see the initial situation in which we 

have a “map” of a square city surrounded by a rim of green.  Within the city, most of the cells are either 

blue or red – in a strictly alternating pattern – but roughly 4% (1 in 25) are green.  The blue and red cells 

represent dwellings that are occupied by members of two different religious communities, the Blues and 

the Reds, while the green cells are unoccupied.  Now run the program again, and see what happens, as the 

(initially very few) Blues and Reds who find that they are “unhappy” with their neighbourhood move around.  

The precise outcome depends on chance, but almost invariably, you will end up with a pattern in which the 

Blues and the Reds are very largely segregated rather than interspersed.  You might naturally think this 

indicates that they are strongly biased against the other group, but in fact this result comes about even 

when the bias is relatively mild. 

In the “Spread of disease” program, we effectively treated each cell as having at 

most four immediate neighbours that it could infect.  But with this program, we consider 

each cell as having eight neighbour cells, as shown on the right here.  To assess any 

individual’s “happiness”, we simply count the number of neighbours that have the same 

religion (variable like) and the number of neighbours that have the opposite religion 

(variable unlike), and check whether it is true that (like  unlike–1).  If it is true, then the 

individual is “happy”; if false, “unhappy”.  In other words, an individual becomes unhappy when the 

neighbours from the unlike religion outnumber the neighbours from the like religion by 2 or more.  So, for 

example, a Red individual with 3 Red neighbours will be happy as long as they have a maximum of 4 Blue 

neighbours; but with 3 Red and 5 Blue neighbours, they would become unhappy.  Any individual assessed 

as unhappy will immediately try to find an empty (i.e. green) cell where they would be happy, and on finding 

one, will move there (and the cell from which they move will become empty).  This one simple rule governs 

the entire dynamics of the model!  Let us now go through the program, line by line: 

width = 50 

height = 50 

empty = green 

As is usual with these models, the width and height of the grid are set at the beginning, to make the code 

easily adjustable, and the empty colour is set as green, which makes that easily changeable also (e.g. to 

midgrey) if desired.  As we saw in §1 above, we could if we wished use the Final keyword to ensure that 

these definitively stay unchanged throughout the program, but that isn’t essential, so here we go for the 

more standard way of doing things.  (Another common convention is to use capital letters for constants.) 

Next, we come to a function definition, whose purpose is to calculate whether or not an individual of a given 

colour c – whether red or blue – would be “happy” in the cell with coordinates (x,y).  It starts like this: 

def happy(x,y,c): 

1 2 3 

8  4 

7 6 5 
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    like=0 
    unlike=0 

These first two lines following the function header initialise the count of like and unlike neighbours for the 

“current” cell at location (x, y).  Both counts, obviously, start at 0. 

    for i in range(-1,2): 

        for j in range(-1,2): 
            if (i!=0) or (j!=0): 

Variables i and j are used, respectively, for the x-offset and y-offset of each neighbour from the current cell 

(x, y), so the neighbour in question will be cell (x+i, y+j).  These three lines ensure that we count through all 

eight neighbours of the current cell, making each of i and j equal to -1, 0 and 1 in turn, but ignoring the case 

in which both i and j are 0 (since this would be the current cell itself). 

                neighbour=pixcol(x+i,y+j) 

                if neighbour!=empty: 

                    if neighbour==c: 

                        like+=1 

                    else: 

                        unlike+=1 

These are the commands performed in turn for each of the eight neighbouring cells.  First, neighbour is 

made equal to the relevant pixel colour.  If this is empty (i.e. the relevant neighbouring cell is a green space), 

nothing further happens.  Otherwise, neighbour must be either blue or red, so either like or unlike should 

be incremented, depending on whether it matches colour c (which is the colour of the individual whose 

happiness – or potential happiness – we are trying to assess).  The upshot of all this is that after having gone 

through this code eight times (once for each neighbouring cell), like will record the number of neighbouring 

cells of colour c, and unlike will record the number of neighbouring cells of the “opposite” colour. 

    return (like>=unlike-1) 

This line specifies the result of the function (i.e. true if (like  unlike–1) and false otherwise), and then ends 

the function definition.  Our function happy has now been defined, and can be used in the remainder of the 

program, to which we now turn. 

canvas(-1,-1,width+2,height+2) 
resolution(width+2,height+2) 

These specify the Canvas size (i.e. coordinate range) and resolution (i.e. number of pixels).  Here the 

coordinates will range from -1 to width in the x direction (with width+2 horizontal pixels) and -1 to height 

in the y direction (with height+2 vertical pixels).  So for example if width has been set to 50, there will be 52 

horizontal pixels, and each of these will correspond to a distinct x-coordinate, from -1 to 50 inclusive.   

(Likewise for height and the y-coordinates.)  The reason for the “+2” is to allow for an empty (green) border, 

one cell wide, around the 50x50 city map, which saves us from worrying about the edge cells within the city. 

noupdate() 

blank(empty) 

for i in range(width): 

    for j in range(height): 

The noupdate() command prevents the Canvas display from updating until the initial disposition has been 

completed, so as to make the start of the program neater and quicker.  Then blank(empty) blanks the 

entire Canvas to the colour empty (i.e. green), thus creating the green borders.  The double loop that follows 

will count through every cell (i, j) within the city (i counting horizontally from 0 to width-1, and j counting 

vertically from 0 to height-1), setting the initial colour of each cell. 

        if randrange(25)==0: 

            pixset(i,j,empty) 
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        else: 
            if (i+j)%2==0: 

                pixset(i,j,red) 

            else: 

                pixset(i,j,blue) 

pause(2000) 

The first command within the loop tests whether a randomly chosen number between 0 and 24 is equal to 

0; if it is (i.e. with a 1-in-25 chance, or 4% probability), the pixel at location (i, j) is set to empty (i.e. green – 

which in fact it is already).  Otherwise, the relevant pixel is set to red if (i+j) is an even number (i.e. its 

remainder on division by 2 is zero) or blue if it is an odd number.  Hence the entire city is coloured in a 

“chequerboard” red/blue fashion, except for the 4% green cells.  That done, the program pauses for two 

seconds (2000 milliseconds) to show this idyllic scene of (temporary) social integration! 

while ?key!=\escape: 

    noupdate() 

The while loop here makes it possible to halt the program by pressing the ESCAPE key.  The loop that follows 

will combine four tasks: 

• Find a cell whose occupant is currently unhappy, and record their colour as this. 

• Colour the relevant cell empty (i.e. green), to show that the occupant has left. 

• Find a cell which is currently empty, and where an occupant of this colour would be happy. 

• Colour the relevant cell this colour, to show that it is now occupied. 

The loop starts with noupdate() – and will finish with update() – to ensure that the switching of colours 

is done smoothly, with both recolourings becoming visible at the same time. 

    this=empty 

    while (this==empty) or (happy(tryi,tryj,this)): 

        tryi=randrange(width) 

        tryj=randrange(height) 
        this=pixcol(tryi,tryj) 

    pixset(tryi,tryj,empty) 

First this is set to empty as an initial value.  Then a while loop is entered to try to find an unhappy individual 

within the grid.  To achieve this, tryi is set to a random value between 0 and width-1, and tryj is set to a 

random value between 0 and height-1: these together mean that the coordinate pair (tryi, tryj) specifies a 

random cell within the city grid.  Then this is set to the pixel colour of that cell, and this whole sequence is 

repeated until we have found a cell which is not empty, and whose occupant is unhappy at that position.  

Having found such a cell, it is made empty, and we move on to finding a new location for the previously 

unhappy occupant. 

    while (pixcol(tryi,tryj)!=empty) or not(happy(tryi,tryj,this)): 

        tryi=randrange(width) 

        tryj=randrange(height) 

    pixset(tryi,tryj,this) 

Again we repeatedly find a random cell with coordinates (tryi, tryj) within the city grid, but this time the 

sequence is repeated until we have found a cell which is empty, and where the individual we are trying to 

move (whose colour is this) would be happy.  Having found such a cell, it is coloured this to complete the 

individual’s move from an unhappy to a happy location. 

    update() 

As remarked earlier, the last instruction in the main loop is update() to ensure that the recolourings (of the 

moved individual’s old and new cells) take place at the same time.  The program finishes when this main 

loop finishes (i.e. when the ESCAPE key is pressed), or the “HALT” button is clicked. 
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5.  Some Ideas for Further Exploration 

Many different variations are possible on the models we have considered here, and you can have a lot of 

fun – and also learn a lot about programming – by trying to find interesting ways to extend or modify them.  

To get you started, here are some suggestions. 

5.1  Epidemic Programs 

1. In the “Tipping point” program, there is no limit on the geographical distance between infectious 

individuals and their contacts – they are all assumed to be mixing randomly within a city’s transport 

system.  You might like to see what happens if you impose such a limit, or if – for example – you insist 

on the vast majority of an individual’s contacts being within the same quadrant of the city. 

2. The box on page 6 above asks whether changing the colours used in the “Spread of disease” program 

could introduce a problem.  Can you discover what sort of problem this is hinting at? 

3. Within either of these programs, you might want to try modifications inspired by the Covid epidemic 

– e.g. implementing partial “lockdowns”, or travel bans, or tests for those who suspect that they may 

be infected followed by “self-isolation”.  You could also try adapting the programs so that you are 

able interactively to “infect” one of the cells by clicking on it, thus simulating the effect of someone 

infected arriving from abroad. 

4. More ambitiously, you might like to consider developing a program that allows for virus mutation, 

with people who have recovered being only partially immune to new variants, depending on how 

much the virus has changed in the meantime.  (For example, you might colour individuals with 

different shades of red, depending on the virus concerned.)  

5.2  Schelling Segregation Model 

5. Currently the program defines a “neighbourhood” as 8 cells: a 3x3 square omitting the central cell.  

Can you adapt it to use a neighbourhood of 24 cells (i.e. 5x5 omitting the central cell)?  If you do this, 

what “happy” rule would give the best results? 

6. The “happy” rule currently depends on the absolute difference between like and unlike, irrespective 

of the total number of neighbours.  Can you make it depend instead on the relevant ratios (e.g. an 

individual might be happy if unlike is less than 150% of like, or equivalently, less than 60% of the total 

number of neighbours)? 

7. Sometimes the program seems to stop even when there are still some unhappy individuals who could 

be made happy by moving (something you may see far more often if you change “randrange(25)” to 

“randrange(100)” at line 28).  Can you see why this might be, and can you suggest a way of fixing it, 

either totally or partially? 

8. Imagine that the city is being settled, from the start, by alternate Blue and Red individuals moving 

into random cells where they would be happy.  How does this affect the dynamics? 
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