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Turtle Python 7 – Chaotic Phenomena 

Until the 1970s, scientists in many fields focused their attention almost entirely on linear systems – that is, 

systems governed by linear equations (of the general form y = ax + b).  Such systems are “well-behaved” 

and relatively easy to analyse, because small changes in “inputs” lead to correspondingly small changes in 

“outputs”, so approximation methods work well.  But as fast-improving computer technology enabled real 

physical systems to be modelled in more complex ways, users began to realise that these newer models 

were not at all well-behaved in this way.  Most famously, in 1961, Edward Lorenz – working with a computer 

model of the weather – discovered that a tiny difference in an initial value entered into the model to 

represent the condition at one point in time (a value of 0.506, used as an approximation for 0.506127) could 

lead to totally different future predictions.  He thus encountered sensitive dependence on initial conditions, 

which he named “the butterfly effect”, based on the idea that, if the weather is correctly modelled by 

equations like those he was working with, then in principle the disturbance caused by the flapping of a 

butterfly’s wings in Brazil could make the crucial difference that later brings about a tornado in Texas. 

 Note that this sort of behaviour, though commonly called “chaotic” and extremely hard to predict 

in detail, is not random.  Indeed we shall see that it can arise in systems that are entirely deterministic, 

where everything follows according to precisely defined rules, with no role whatever for chance or genuine 

indeterminacy.  And it turns out that non-linear systems, commonly exhibiting this sort of sensitive 

dependence, occur throughout nature, so that the linear systems deeply investigated by conventional 

science (and therefore generally assumed in the past to be typical) are the exception rather than the rule.  

Indeed the mathematician Stanislaw Ulam famously remarked that considering “non-linear systems” as a 

special subject of study is rather like considering most of biology as the study of “non-elephants”!  In recent 

years, scientific attention has increasingly turned towards these more complex systems, and it is the 

development of the computer which has made this possible (as illustrated by how the phenomenon of chaos 

was widely ignored before the 1960s, even though Henri Poincaré had identified it as early as 1890). 

1.  The Logistic Equation 
Suppose we have a population of creatures – insects, for example 

– whose generations do not overlap.  Adults lay eggs, and by the 

time the eggs hatch, the parents have died.  If resources of food 

and space are unlimited, then more adults will typically produce 

more surviving offspring: for example, the number of offspring 

that survive long enough to become breeding adults in their turn 

might be 3 times the number of adults.  This is a straightforward 

linear relationship.  But as Thomas Malthus famously pointed out 

in his Essay on the Principle of Population of 1798 (a work which 

Darwin credited for inspiring his discovery of evolution by natural 

selection), such multiplicative population growth quickly becomes 

unsustainable.  If we start with 30 insects weighing 5 mg each, and 

the population multiplies by 3 every year, then after 60 years, the 

weight of the insect population will exceed that of the entire 

Earth!  So any environment will impose some absolute limit on population growth, and the environmental 

pressure will typically increase as the population grows closer to that limit.  Suppose, for example, that our 

insects live mainly on a particular kind of plant; then as the population of insects grows, those plants are 

likely to be damaged and their population seriously reduced from being eaten, and hence only a small 

proportion of the next generation of insects will be able to find the food to grow successfully to maturity.  

(Similar issues are familiar from the growth of human populations, where only the increasing use of 

technology has – at least so far – prevented devastation of our own numbers by environmental pressure.) 
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 The dynamics of these sorts of interactions are likely to be complicated in detail, but it turns out 

that a wide range of models exhibit broadly similar behaviour, so we can confine our attention here to an 

extremely simple model, based on what is commonly called the logistic equation: 

𝑃′ = 𝑟𝑃(1 − 𝑃) 

Here P is the current population of insects, as a proportion of the limit that can ever be achievable within 

that environment (so if the limit is 100000 and the current population is 27183, then P is 0.27183).  The 

parameter r is the growth rate, and the equation predicts P’, the population in the next generation, again 

as a proportion of the limit.  In the previous paragraph, we imagined a growth rate of 3, generating an 

exponential population explosion as it multiplied, generation after generation.  But in this logistic equation, 

any such explosion is prevented by the (1 – P) factor, which approaches 0 as the population comes close to 

the limit (and if P actually reaches the limit of 1, then P’ will plunge to zero, eradicating the population). 

 What result should we expect from all this?  Prior to the non-linear revolution, most scientists would 

probably have proceeded by analysing the conditions for equilibrium (a method still standard in economics).  

This involves assuming that the population will eventually stabilise, at which point P’ will be identical to P, 

and for this to happen with r equal to 3, (1 – P) must be 1/3 so that P is 2/3.  On this basis, we might predict 

that if the limiting population is 100000, then almost no matter what population number we start from, we 

should end up with an equilibrium at 66667 (or, since rounding is involved, a minimal oscillation between 

66667 and 66666).  But in fact, as the image of the “Logistic” program illustrates above, that very rarely 

happens (and only if we happen to start from a lucky value).  Instead, we nearly always quickly reach a 

population that oscillates around that equilibrium, but without ever subsequently getting closer to it.  If you 

click repeatedly on the red “3.0” on the Canvas, then the program will be run repeatedly with a random 

initial population, and you can see this for yourself. 

 If r is less than 3.0, then in fact an equilibrium does usually 

get reached, but things are more interesting if we select a larger 

value for r, by clicking on “3.5”, for instance.  Again equilibrium is 

theoretically possible (at a rounded value of 71429), but now the 

population will almost always end up oscillating through four 

different values (50091, 87500, 38281, and 82693).  Take r higher 

still, to 3.6, 3.7, 3.8. 3.9 or 4.0, and the population movements 

become even more surprising, with increasing apparent 

randomness or – as it is now known – chaotic behaviour.  

(An ambitious student might be interested in modifying the 

program to allow finer discrimination, e.g. selectable r values 

between 3.51 and 3.59.  Theoretically, chaos ensues at 3.57.) 

 

 What causes this very surprising behaviour, from such a 

simple equation?  A useful way of visualising what is going on is a 

“spider diagram”, implemented by the program “Logistic Spider” 

(and shown in the image to the left).  Both the x- and y-axes here 

run from 0.0 to 1.0, and the line y = x is also shown (making a 45° 

angle with both axes).  Against this background is plotted the 

graph of the logistic function 𝑦 = 𝑟𝑥(1 − 𝑥), in blue, with r taking 

the chosen value.  In the plot shown here, r is 2.9 and the initial 

population has been randomly given the value of 92701 – so we 

start with x equal to 0.92701 on the graph.  If we now put this 

value into the logistic function, y becomes 0.19622 (the height of 

the green line going up from the x-axis just above 0.9).  So 

according to this model, the population has fallen dramatically, 

from 92701 down to 19622.  Where next?  The height we have 
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reached on the graph (i.e. 0.19622) now has to be fed in as the next x-value, so to do this, we draw a 

horizontal line to hit the line y = x; this is the fairly long horizontal green line at around height 0.2, whose 

left-hand end is at the point (0.19622, 0.19622).  Now if we move vertically until we reach the blue curve of 

the logistic function, the position we reach will correspond to the y-value we get from putting x equal to 

0.19622, namely 0.45738 (which corresponds to a population of 45738).  To get the next point in the series, 

we again move horizontally until we hit the line y = x, now at the point (0.45738, 0.45738), and then move 

vertically to hit the blue curve, so as to find the y-value that corresponds to the x-value 0.45738 (namely, 

y = 0.71973).  Notice how repeatedly moving to the line y = x serves to translate each successive y-value 

into an x-value for the next step.  And you will see from the diagram how the series converges onto the 

point of intersection of the blue curve and the line y = x: equilibrium is reached at (0.65517, 0.65517). 

 If r is given the value 3.5 instead of 2.9, then the shape of 

the intersection between the logistic function and the line y = x 

crucially changes, with the result that “near misses” are now 

pushed further away from the equilibrium (at 0.714285) by 

subsequent iterations, as we see pictured here.  The sequence gets 

close with the fourth value of 0.72974, but then diverges (with 

0.69027, 0.74829, 0.65923, 0.78626, 0.58819, 0.84778, and 

0.45167) before converging, after 16 intermediate iterations, to 

the repeating four-value cycle 0.87500, 0.38281, 0.82693, and 

0.50091.  Almost any initial value (apart from a “bullseye” on the 

equilibrium) will likewise converge to this cycle, which we 

therefore call the attractor of the function.  When r was 2.9, we 

saw that the attractor of the logistic function was a single 

equilibrium value; when r is 3.5, the attractor becomes a four-

value cycle; what happens if we raise r yet further? 

 If r is given the value 3.9, then as with 3.5, any “near miss” 

of the equilibrium point (which is at 0.74359) will be followed by 

iterations that get further away, but now there is no settling down 

into a simple cycle of values.  Instead, as shown here, the sequence 

quickly gets into a chaotic trajectory, jumping around 

unpredictably and exhibiting a sensitive dependence in which 

nearby values are followed by diverging rather than converging 

patterns.  This erratic trajectory is an attractor – in that almost any 

initial value will be “pulled” into something like it – but it is a 

“strange attractor”, because it is divergent rather than 

convergent.  The population will never reach stability, but will be 

repeatedly subject to “booms” and “busts”, driven into these not 

by any external factors, but simply by the non-linear dynamics of 

the logistic equation. 

 

 Lord Robert May brought the logistic equation to prominence in a famous 1976 article in the journal 

Nature, whose conclusion focuses on its educational significance.  There May points out that school and 

university courses have hitherto been dominated by “the elegant body of mathematical theory pertaining 

to linear systems”, thus developing students’ “mathematical intuition” in a way that “ill equips [them] to 

confront the bizarre behaviour exhibited by … nonlinear systems [which] are surely the rule, not the 

exception, outside the physical sciences”.  He finishes as follows: “I would therefore urge that people be 

introduced to [the logistic equation] early in their mathematical education.  …  Such study would greatly 

enrich the student’s intuition about nonlinear systems.  Not only in research, but also in the everyday 

world of politics and economics, we would all be better off if more people realised that simple nonlinear 

systems do not necessarily possess simple dynamical properties.” 
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2.  The Mandelbrot Set 

With the logistic equation, we saw how a sequence of numbers could be generated in turn, by starting with 

one given number, feeding it into the equation (as P) to derive the next number in the sequence (as P’), 

then feeding this number in to get the next, and so on.  We also saw that if r takes a relatively high value 

(e.g. 3.6 or above), then the sequence is chaotic, so that it becomes impossible to predict any simple long-

run outcome.  This also yields sensitive dependence on initial conditions, in which even tiny differences at 

one point in the sequence will magnify as the following numbers are generated, making it impossible to 

treat one “trajectory” through the numbers as a good approximation of other “nearby” trajectories – any 

such nearness is purely temporary. 

 An even more famous illustration of these 

ideas is provided by the Mandelbrot set, named after 

Benoit Mandelbrot (1924-2010) and pictured here as 

the black area.  This is of great mathematical interest, 

but here we focus on how the image is constructed.  

The canvas is 1500×1500 pixels, and it here represents 

– at a scale value of 500 pixels per unit – the 3.0×3.0 

square in the complex plane from –2.0 to 1.0 

horizontally, and –1.5 to 1.5 vertically.  Thus each point 

represents a complex number, of which the general 

form is (a + ib), where i is the square root of –1. 

(If you are unfamiliar with complex numbers, just 

consider instead starting with the point (a, b) using 

standard Cartesian coordinates – the sort everyone 

learns at school – and following a sequence of points on the graph.) 

 Now suppose we pick a particular complex number, say z0 = (a + ib), and form a sequence starting 

from this, using the formula: 

𝑧′ = 𝑧2 + (𝑎 + 𝑖𝑏) 

In other words, if z is some number in the sequence, then we calculate z’, the next number in the sequence, 

by squaring z and adding (a + ib), which is z0, the first point in the sequence.  Using “zn” to signify the number 

reached after n iterations of this process, we can express this as: 

𝑧𝑛+1 = 𝑧𝑛
2 + 𝑧0 

Squaring the complex number (x + iy) can be done by simple algebra, bearing in mind that i is the square 

root of –1 (so that i2y2 = –y2): 

(𝑥 + 𝑖𝑦)2 = 𝑥2 + 𝑖2𝑦2 + 2𝑖𝑥𝑦 = (𝑥2–𝑦2) + 𝑖(2𝑥𝑦) 

Thus squaring the number represented by the coordinates (x, y) takes us to the number represented by the 

coordinates (x2 – y2, 2xy), and if we then add (a + ib), this takes us to (x2 – y2 + a, 2xy + b).  Note again that 

this can be understood as generating a sequence of points in the graph, so thinking in terms of complex 

numbers is not essential. 

In updating the x- and y-coordinates within our image from one point to the next in this series, we 

need to bear in mind the scale value of 500 pixels per unit.  Thus a numerical x-coordinate of m will have a 

pixel x-coordinate of 500m, a numerical y-coordinate of n will have a pixel y-coordinate of 500n, and a 

numerical y-coordinate of m×n should have a pixel y-coordinate of 500mn (=500m × 500n  500).  Notice 

therefore that when we multiply two of these pixel coordinates together, we need to divide by the scale 

value (here 500, but changeable if we want either more detail or more speed).  So, for example, if we have 

pixel coordinate values of x as 700 and y as 1000, then the pixel coordinate value of xy should come to 1400 

(i.e. 700×1000/500), as would be expected given that the y-value of 1000 represents the number 2.0.  Taking 

See §2.1 
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this into account, you might very reasonably expect the updating code to be something like this: 

temp = (x*x–y*y) / scale  # temp = x squared minus y squared 

y = 2*x*y/scale + b       # calculate new y as (2xy + b) 

x = temp + a              # calculate new x as (temp + a) 

Here the variable “temp” is used to store the current scale-adjusted value of x2 – y2, prior to y being updated.  

Then y is updated to 2xy + b (again adjusting xy by the scale factor), and x is updated to x2 – y2 + a. 

 In the “Mandelbrot” example program, however, you will see that the updating is done slightly 

differently, like this: 

temp = divmult(x+y, scale, x–y); 

y = divmult(2*x, scale, y) + b; 

x = temp+a; 

Any computer system will have a limit to the size of integers that it can handle, and because Turtle uses 

32-bit (i.e. 4 byte) integers, its highest positive integer is (231–1), i.e. 2147483647 (which is accordingly 

named maxint).  So if you want to produce images of parts of the Mandelbrot set that involve a high scale 

value (by “zooming in” on particular parts of it, as in §2.1 below), then squaring x or y directly will probably 

exceed this limit and generate an error message.  Turtle functions such as hypot and divmult are designed 

to circumvent this sort of problem, with hypot(a,b,c) yielding the rounded result of c×(a2+b2),1 and 

divmult(a,b,c) yielding the rounded result of c×(a/b), while avoiding overflow errors for intermediate 

results.  In the current case, we first want to calculate (x2-y2)/scale, so we take advantage of the well-known 

formula for difference of two squares: (x2–y2) = (x+y).(x–y); hence we use divmult(x+y,scale,x–y).  

Then we calculate 2xy/scale using divmult(2*x,scale,y) so that the multiplication of x by y takes place 

safely within the function, with division by scale bringing the function’s result down below maxint. 

 The Mandelbrot set is the set of points (a, b) in the complex plane for which the sequence just 

explained – starting from (a, b) – never diverges in the sense of getting further and further from the origin 

at (0, 0).  Any sequence that moves further than 2.0 from the origin will diverge, and in order to produce 

our brightly coloured diagram, we need to keep track of how quickly sequences exceed this crucial distance, 

so our program combines these tests with the updating calculation as follows: 

iterations = 0; 

while (hypot(x,y,1) < 2*scale) and (iterations <= maxcol): 

    temp = divmult(x+y,scale,x–y) 

    y = divmult(2*x,scale,y)+b 

    x = temp+a 

    iterations += 1  # this adds 1 to iterations 

The loop terminates when either hypot(x,y,1) – the Pythagorean distance of (x, y) from the origin – 

exceeds 1000 (double the scale value, hence equivalent to a distance of 2.0 in the complex plane), or the 

number of iterations exceeds maxcol, a constant set to 40 at the beginning of the main program.  So if a 

sequence has not diverged sufficiently after 40 iterations, then it is presumed never to diverge (which is not 

strictly correct, but enables us to limit the time that the program will take); hence its starting point is 

counted as part of the Mandelbrot set and accordingly coloured black.  But if a sequence does diverge within 

40 iterations, then the starting point is coloured with the Turtle colour code corresponding to the iterations 

value (between 1 and 40 inclusive) at which the loop terminated.  Thus points which diverge after 1 iteration 

are green, after 2 iterations red, then blue, yellow, violet and so on; this is how we get the brightly coloured 

image shown earlier. 

 
1 The name hypot derives from hypotenuse, because hypot(a,b,c) calculates the hypotenuse of a right-angled triangle 

with sides a and b, multiplied by c.  So, for example, hypot(1,2,1000000) gives 2236068, which is the square root of 5 

multiplied by a million and rounded.  To print out 5 to six places of decimals, use “print(qstr(2236068,1000000,6))” – 
the function qstr(a,b,c) generates the decimal string of a/b, rounded to c places after the decimal point. 
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2.1  Zooming in on the Mandelbrot Set 

The “Mandelbrot” example program starts with a subroutine called “startprompt”, which offers the user 

two prompts that allow a choice of program options.  The first is as follows, offering either to display the 

whole Mandelbrot set, or alternatively to zoom in on the “mini lake” indicated in the last image: 

Select Whole set, or Zoom on mini “lake” at –0.1592, –1.0330 (W/Z) 

• If “W” is pressed, then “xcentre” is made equal to –500000, “ycentre” is made equal to 0, and the 

second prompt is: 

Select Fast/Medium/Slow, giving resolution 300/750/1500: (F/M/S) 

Now pressing “F”, “M” or “S” will result in “scale” values of 100, 250, and 500 respectively, with 

“pixels” equal to 300, 750 and 1500 (i.e. scale*3). 

 

• If “Z” is pressed in response to the first prompt, then “xcentre” is made equal to –159200, “ycentre” 

is made equal to –1033000, and the second prompt is: 

Select Fast/Medium/Slow, giving resolution 300/600/1200: (F/M/S) 

Now pressing “F”, “M” or “S” will result in “scale” values of 10000, 20000, and 40000 respectively, 

with “pixels” equal to 300, 600 and 1200 (i.e. scale/100*3). 

Note that xcentre and ycentre here represent real number coordinates divided by one million, which for the 

“W” option specify the centre point (–0.5, 0) and for the “Z” option the centre point (–0.1592, –1.033). 

Having returned from this subroutine, the main program continues to calculate a series of pixel 

coordinates (i.e. coordinates in terms of position on the Canvas): 

xstart=divmult(xcentre,1000000,scale)–pixels/2 

ystart=divmult(ycentre,1000000,scale)–pixels/2 

xfinish=xstart+pixels 

yfinish=ystart+pixels 

The first two lines calculate the pixel coordinate of the relevant centre point, then subtract half the Canvas 

pixel width (or height) to yield the pixel coordinates of the point (xstart, ystart), which is the top left of the 

Canvas.  Then the next two lines calculate the pixel coordinates of the point (xfinish, yfinish), which is the 

bottom right of the Canvas.  Here are the relevant values for the different startprompt choices: 

 

 W/F W/M W/S Z/F Z/M Z/S 

scale 100 250 500 10000 20000 40000 

pixels 300 750 1500 300 600 1200 

xstart –200 –500 –1000 –1742 –3484 –6968 

xfinish 100 250 500 –1442 –2884 –5768 

ystart –150 –375 –750 –10480 –20960 –41920 

yfinish 150 375 750 –10180 –20360 –40720 

The program then displays the range over which the Mandelbrot set will be plotted, from xstart to xfinish 

horizontally, and ystart to yfinish vertically, in every case divided by scale to convert to a real number (and 

displayed here to four decimal places).  To sum up, then, pixels determines the size of the Canvas (a square 

measuring pixels×pixels), and scale determines the magnification of the image relative to the complex plane 

– hence the extent of the complex plane that is pictured will be determined by the pixels/scale ratio.  The 

positioning of this image in the complex plane is determined by xcentre and ycentre, specifying the mid-
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point of the image in units of 0.000001 (i.e. millionths).  

The “Z” option selects (–0.1592, –1.033) as the mid-point 

in the complex plane, which as noted earlier is close to the 

centre of the “mini lake” indicated in the previous image 

(but of course you can choose other locations to explore 

if you wish).  Here we see the zoomed version – and notice 

how when we zoom in, we still see lots of fine detail, which 

indeed goes “all the way down”.  This therefore exhibits 

the sensitive dependence on initial conditions mentioned 

earlier – even points which look adjacent at one 

magnification can behave quite differently if we look more 

closely (but unfortunately the limited precision of the 

Turtle System’s number variables – four bytes and 

therefore 32 binary digits – prevents us from pushing the 

magnification much further than this).  

2.2  Spectral Colouring 

So far, our colouring of the Mandelbrot set has used the built-in sequence of Turtle colours, which sets 

adjacent colours as contrasting rather than blending.  These images are striking, but it is more illuminating 

to use colours that change gradually, to indicate more consistently the rate of divergence at different points 

in the complex plane.  A neat way of doing this is illustrated in the “Mandelbrot spectral colours” example 

program, whose output is pictured here.  To achieve this, 

we set up a “spectrum” of reference colours starting with 

violet, then blue, cyan, lime, yellow, orange, red, and back 

to violet again (these colour codes are stored in the spectcol 

list, so spectcol[0] = violet, spectcol[1] = blue, and so on).  

Then we calculate “boundaries” for each of these (stored in 

the boundary list), spread through the range from 0 to 

maxcol, so that if maxcol is 40, their successive boundary 

values are: violet 0, blue 6, cyan 11, lime 17, yellow 23, 

orange 29, red 34, and again violet 40; whereas if maxcol is 

100, their successive boundary values are: violet 0, blue 14, 

cyan 29, lime 43, yellow 57, orange 71, red 86, and again 

violet 100.  Then if we want a colour corresponding to 

number 32, say, we identify the two boundaries on either 

side of this (i.e. if maxcols is 100, these will be cyan at 29 

and lime at 43), and we mix the corresponding colours in proportion to our number’s closeness to the 

relevant boundaries (so for number 32, which is 3 away from the cyan boundary and 11 away from the lime 

boundary, we mix 3/14 lime with 11/14 cyan).  Here is the function that does the mixing: 

def mixcolour(n): 

    col2 = 1 

    while (boundary[col2]<n) and (col2<7): 

        col2 += 1 

    col1 = col2–1 
    return mixcols(spectcol[col1], spectcol[col2], boundary[col2]–n, 

                   n-boundary[col1]) 

The parameter n is the number (e.g. 32) whose colour we want to find, and we do this by identifying the 

boundaries (col1 and col2) between which it lies.  The result is conveniently provided for us using Turtle’s 

“mixcols” command, which mixes the two given colours in the given proportions (by calculating a weighted 

average of each of the red, green and blue components of each colour, then combining these). 
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3.  Ideas for Independent Exploration: Mandelbrot and Julia Tourism 

This handout has been mainly about mathematical understanding rather than program development, but 

there is plenty of scope for independent exploration.  Here are two initial ideas: 

• As mentioned in §1, many functions display similar chaotic behaviour to the logistic equation, so you 

could try discovering other such interesting functions and graphing them in a similar way (making sure 

that they map values from the relevant range – e.g. 0.0 to 1.0, or 0 to 1000 – into that same range).  

Other famous examples that you might want to look up are the Henon map, sine map, and tent map. 

• In §2.1 and §2.2, we saw a program that “zooms in” on the Mandelbrot set.  Try viewing some well-

known “tourist sights”, such as “Sea Horse Valley” (centre around (-0.79,0.15), e.g. with a scale of 5000 

and 1000x1000 pixels) or “Elephant Valley” (centre around (0.34,0.127), e.g. with a scale of 5000 and 

1300x1300 pixels).  If you’re feeling seriously ambitious, try to develop a Mandelbrot program that 

works more efficiently (e.g. by spending less time scanning large black expanses), or which enables you 

to specify a “zoom area” with the mouse. 

We can also dig more deeply into the mathematical theory, to uncover further possibilities for generating 

beautiful patterns.  Closely related to the Mandelbrot set are so-called Julia sets, named after the French 

mathematician Gaston Julia (1893-1978), who taught Benoit Mandelbrot at the École Polytechnique in Paris 

from 1945-47 (Mandelbrot’s family having emigrated from Poland to France in 1936).  We saw in §2 that 

the Mandelbrot set is the set of complex numbers (a + ib), such that a series of the form: 

   𝑧0 = (𝑎 + 𝑖𝑏) 

   𝑧𝑛+1 = 𝑧𝑛
2 + (𝑎 + 𝑖𝑏) 

does not diverge to infinity (or equivalently, never gets further than 2.0 from the origin).  To generate the 

Mandelbrot image, we visit in turn lots of points (a + ib) that lie within the circle of radius 2.0 around the 

origin, then iteratively calculate values of this series for each of them, and then assign a colour showing how 

quickly the series diverges (up to some suitable maximum number of iterations, e.g. 40). 

Julia sets are subtly different, and each one of these is relative to a specific complex parameter – so there 

are zillions of Julia sets, each corresponding to a different parameter value.  The Julia set for any such chosen 

parameter (p + iq) is the set of complex numbers (a + ib), such that a series of the form: 

   𝑧0 = (𝑎 + 𝑖𝑏) 

   𝑧𝑛+1 = 𝑧𝑛
2 + (𝑝 + 𝑖𝑞) 

does not diverge to infinity (or equivalently, never gets further than 2.0 from the origin).  The process of 

generating the Julia image (for any chosen parameter value) is accordingly much the same as with the 

Mandelbrot set: we visit in turn lots of points (a + ib) that lie within the circle of radius 2.0 around the origin, 

then iteratively calculate values of this series for each of them, and then assign a colour showing how quickly 

the series diverges (up to some suitable maximum number of iterations, e.g. 40). 

• As with the Mandelbrot set, you can do “Julia tourism” by exploring various Julia sets that have 

impressed some people enough to have been given shape-based nicknames, for example involving 

parameter values of –1.755 (Airplane), –1.0 (Basilica), –0.123+0.745i (Douady’s Rabbit), –0.8+0.156i 

(Dragon), –0.1+0.651 (Lightning), –0.5+0.567i (Phoenix), –0.75 (San Marco), and –0.745+0.113i (Twin 

Spirals).  Note that some of the features named here might only be visible when magnified, and only in 

particular regions of the set.  It’s also worth exploring around parameters that are at interesting places 

within the Mandelbrot set (e.g. Seahorse Valley).  Here it might be helpful to take a preliminary look at 

the Julia sets using the convenient app at https://sciencedemos.org.uk/julia.php.  The companion app 

https://sciencedemos.org.uk/mandelbrot.php is also instructive – for instance, you will find that the 

pattern can change quite significantly as you adjust the number of iterations (e.g. from 40 up to 400). 

http://www.turtle.ox.ac.uk/
https://sciencedemos.org.uk/julia.php
https://sciencedemos.org.uk/mandelbrot.php

